Infraestructura Avanzada de Trading
Stack Tecnológico Completo
Hardware Requirements
HARDWARE_SPECS = {
'minimum': {
'cpu': 'Intel i7 or AMD Ryzen 7',
'ram': '16GB DDR4',
'storage': '512GB SSD',
'internet': '100 Mbps dedicated',
'monitors': '2x 24" 1080p',
'cost': '$1,500-2,000'
},
'recommended': {
'cpu': 'Intel i9 or AMD Ryzen 9',
'ram': '32GB DDR4',
'storage': '1TB NVMe SSD + 2TB HDD',
'internet': '1Gbps fiber with backup',
'monitors': '3x 27" 1440p',
'ups': 'APC 1500VA',
'cost': '$3,000-4,000'
},
'professional': {
'cpu': 'Intel Xeon or AMD Threadripper',
'ram': '64GB+ DDR4',
'storage': '2TB NVMe SSD RAID',
'internet': 'Dedicated line + cellular backup',
'monitors': '6x 32" 4K',
'server': 'Cloud computing integration',
'cost': '$8,000-15,000'
}
}
Software Stack
class TradingTechStack:
def __init__(self, level='intermediate'):
self.level = level
self.stack = self.build_stack()
def build_stack(self):
base_stack = {
'operating_system': 'Windows 10/11 Pro',
'data_providers': [
'Polygon.io', # Real-time data
'IEX Cloud', # Backup data
'Quandl', # Historical data
'Alpha Vantage' # Fundamentals
],
'brokers': [
'Interactive Brokers', # Primary
'TD Ameritrade', # API backup
'Alpaca', # Commission-free
'TradeStation' # Advanced charts
],
'programming': {
'languages': ['Python', 'JavaScript', 'SQL'],
'frameworks': ['pandas', 'numpy', 'scipy', 'matplotlib'],
'databases': ['PostgreSQL', 'InfluxDB', 'Redis'],
'message_queues': ['RabbitMQ', 'Apache Kafka']
},
'platforms': [
'Jupyter Lab', # Development
'VS Code', # IDE
'DAS Trader Pro', # Execution
'TradingView Pro+', # Charts
'Discord', # Alerts
'Slack' # Team communication
]
}
if self.level == 'professional':
base_stack.update({
'cloud_services': ['AWS', 'Google Cloud', 'Azure'],
'monitoring': ['Grafana', 'Prometheus', 'ELK Stack'],
'deployment': ['Docker', 'Kubernetes', 'Terraform'],
'additional_data': ['S&P Capital IQ', 'Bloomberg Terminal']
})
return base_stack
Pipeline de Datos en Tiempo Real
Arquitectura de Datos
class RealTimeDataPipeline:
def __init__(self):
self.data_sources = {}
self.processing_pipeline = []
self.storage_systems = {}
self.alert_systems = {}
def setup_data_sources(self):
"""Configurar fuentes de datos"""
# Polygon.io WebSocket
self.data_sources['polygon'] = {
'type': 'websocket',
'endpoint': 'wss://socket.polygon.io/stocks',
'auth': 'API_KEY',
'data_types': ['trades', 'quotes', 'aggregates'],
'latency': '1-5ms',
'cost': '$99-249/month'
}
# IEX Cloud
self.data_sources['iex'] = {
'type': 'rest_api',
'endpoint': 'https://cloud.iexapis.com/v1/',
'auth': 'API_TOKEN',
'data_types': ['quotes', 'news', 'fundamentals'],
'latency': '100-500ms',
'cost': '$9-499/month'
}
# Interactive Brokers TWS
self.data_sources['ibkr'] = {
'type': 'socket_api',
'library': 'ib_insync',
'data_types': ['market_data', 'account_info', 'orders'],
'latency': '50-200ms',
'cost': '$10/month + commissions'
}
def setup_processing_pipeline(self):
"""Pipeline de procesamiento"""
stages = [
{
'stage': 'ingestion',
'function': self.ingest_raw_data,
'description': 'Recibir y normalizar data cruda'
},
{
'stage': 'validation',
'function': self.validate_data_quality,
'description': 'Verificar calidad y consistencia'
},
{
'stage': 'enrichment',
'function': self.enrich_with_indicators,
'description': 'Agregar indicadores técnicos'
},
{
'stage': 'screening',
'function': self.apply_screening_filters,
'description': 'Aplicar filtros de estrategias'
},
{
'stage': 'alerting',
'function': self.generate_alerts,
'description': 'Generar alertas y señales'
},
{
'stage': 'storage',
'function': self.store_processed_data,
'description': 'Almacenar para análisis histórico'
}
]
self.processing_pipeline = stages
def ingest_raw_data(self, data_stream):
"""Ingesta de datos en tiempo real"""
normalized_data = {
'timestamp': pd.Timestamp.now(),
'symbol': data_stream['symbol'],
'price': float(data_stream['price']),
'volume': int(data_stream['volume']),
'bid': float(data_stream.get('bid', 0)),
'ask': float(data_stream.get('ask', 0)),
'source': data_stream['source']
}
return normalized_data
def enrich_with_indicators(self, market_data):
"""Enriquecer con indicadores en tiempo real"""
# Mantener rolling window de datos
symbol = market_data['symbol']
if symbol not in self.rolling_data:
self.rolling_data[symbol] = deque(maxlen=200) # 200 periods
self.rolling_data[symbol].append(market_data)
# Calcular indicadores
df = pd.DataFrame(list(self.rolling_data[symbol]))
if len(df) >= 20:
# VWAP
df['vwap'] = (df['price'] * df['volume']).cumsum() / df['volume'].cumsum()
# Moving averages
df['sma_20'] = df['price'].rolling(20).mean()
df['ema_9'] = df['price'].ewm(span=9).mean()
# RSI
df['rsi'] = calculate_rsi(df['price'], 14)
# Volume analysis
df['avg_volume'] = df['volume'].rolling(20).mean()
df['volume_ratio'] = df['volume'] / df['avg_volume']
# Update market data with indicators
latest = df.iloc[-1]
market_data.update({
'vwap': latest['vwap'],
'sma_20': latest['sma_20'],
'ema_9': latest['ema_9'],
'rsi': latest['rsi'],
'volume_ratio': latest['volume_ratio']
})
return market_data
Sistema de Screening en Tiempo Real
class RealTimeScreener:
def __init__(self):
self.strategies = {}
self.active_alerts = {}
self.screening_universe = set()
def register_strategy(self, strategy_name, screening_function):
"""Registrar estrategia de screening"""
self.strategies[strategy_name] = {
'function': screening_function,
'last_scan': None,
'alerts_today': 0,
'max_alerts_per_day': 50
}
def screen_market_data(self, market_data):
"""Aplicar screening a market data en tiempo real"""
symbol = market_data['symbol']
alerts = []
# Solo screenear si el símbolo está en nuestro universo
if symbol not in self.screening_universe:
return alerts
# Aplicar cada estrategia
for strategy_name, strategy_info in self.strategies.items():
try:
# Check rate limiting
if strategy_info['alerts_today'] >= strategy_info['max_alerts_per_day']:
continue
# Apply screening function
result = strategy_info['function'](market_data)
if result and result['signal']:
alert = {
'timestamp': pd.Timestamp.now(),
'symbol': symbol,
'strategy': strategy_name,
'signal_type': result['signal_type'],
'confidence': result.get('confidence', 0.5),
'entry_price': result.get('entry_price'),
'stop_loss': result.get('stop_loss'),
'target': result.get('target'),
'message': result.get('message', f'{strategy_name} signal on {symbol}')
}
alerts.append(alert)
strategy_info['alerts_today'] += 1
except Exception as e:
print(f"Error in strategy {strategy_name}: {e}")
continue
return alerts
# Ejemplo de función de screening para Gap & Go
def gap_and_go_screener(market_data):
"""Screening para Gap & Go en tiempo real"""
# Verificar si hay gap significativo
if 'prev_close' not in market_data:
return None
gap_pct = (market_data['price'] - market_data['prev_close']) / market_data['prev_close']
# Criterios básicos
if gap_pct < 0.10: # Menos de 10% gap
return None
if market_data.get('volume_ratio', 1) < 3: # Menos de 3x volumen
return None
# Verificar si está manteniendo el gap
if market_data['price'] < market_data.get('vwap', market_data['price']):
return None
# Si pasa todos los filtros, generar señal
return {
'signal': True,
'signal_type': 'gap_and_go_continuation',
'confidence': min(0.9, gap_pct / 0.20), # Max confidence at 20% gap
'entry_price': market_data['price'],
'stop_loss': market_data['vwap'] * 0.97,
'target': market_data['price'] * 1.15,
'message': f"Gap & Go: {market_data['symbol']} gapped {gap_pct:.1%} with {market_data.get('volume_ratio', 0):.1f}x volume"
}
Sistema de Alertas Multi-Canal
Discord Integration
import discord
from discord.ext import commands
import asyncio
class TradingAlertsBot:
def __init__(self, token, channel_id):
self.token = token
self.channel_id = channel_id
self.client = discord.Client()
self.setup_events()
def setup_events(self):
@self.client.event
async def on_ready():
print(f'Alert bot logged in as {self.client.user}')
@self.client.event
async def on_message(message):
if message.author == self.client.user:
return
# Responder a comandos básicos
if message.content.startswith('!status'):
await self.send_system_status(message.channel)
async def send_trading_alert(self, alert_data):
"""Enviar alerta de trading a Discord"""
channel = self.client.get_channel(self.channel_id)
# Crear embed rico
embed = discord.Embed(
title=f"🚨 {alert_data['strategy'].upper()} ALERT",
description=alert_data['message'],
color=0x00ff00 if alert_data['signal_type'] == 'long' else 0xff0000,
timestamp=alert_data['timestamp']
)
embed.add_field(name="Symbol", value=alert_data['symbol'], inline=True)
embed.add_field(name="Entry", value=f"${alert_data['entry_price']:.2f}", inline=True)
embed.add_field(name="Stop", value=f"${alert_data['stop_loss']:.2f}", inline=True)
embed.add_field(name="Target", value=f"${alert_data['target']:.2f}", inline=True)
embed.add_field(name="Confidence", value=f"{alert_data['confidence']:.1%}", inline=True)
# Calcular R/R ratio
risk = abs(alert_data['entry_price'] - alert_data['stop_loss'])
reward = abs(alert_data['target'] - alert_data['entry_price'])
rr_ratio = reward / risk if risk > 0 else 0
embed.add_field(name="R/R Ratio", value=f"{rr_ratio:.1f}:1", inline=True)
await channel.send(embed=embed)
def start(self):
"""Iniciar bot de alertas"""
self.client.run(self.token)
Email Alerts
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
class EmailAlertSystem:
def __init__(self, smtp_config):
self.smtp_server = smtp_config['server']
self.smtp_port = smtp_config['port']
self.username = smtp_config['username']
self.password = smtp_config['password']
self.from_email = smtp_config['from_email']
def send_critical_alert(self, to_emails, alert_data):
"""Enviar alerta crítica por email"""
msg = MIMEMultipart()
msg['From'] = self.from_email
msg['To'] = ', '.join(to_emails)
msg['Subject'] = f"CRITICAL TRADING ALERT: {alert_data['symbol']}"
# Crear contenido HTML
html_body = f"""
<html>
<body>
<h2 style="color: red;">CRITICAL TRADING ALERT</h2>
<table border="1" style="border-collapse: collapse;">
<tr><td><b>Symbol:</b></td><td>{alert_data['symbol']}</td></tr>
<tr><td><b>Strategy:</b></td><td>{alert_data['strategy']}</td></tr>
<tr><td><b>Entry Price:</b></td><td>${alert_data['entry_price']:.2f}</td></tr>
<tr><td><b>Stop Loss:</b></td><td>${alert_data['stop_loss']:.2f}</td></tr>
<tr><td><b>Target:</b></td><td>${alert_data['target']:.2f}</td></tr>
<tr><td><b>Confidence:</b></td><td>{alert_data['confidence']:.1%}</td></tr>
<tr><td><b>Time:</b></td><td>{alert_data['timestamp']}</td></tr>
</table>
<p><b>Message:</b> {alert_data['message']}</p>
</body>
</html>
"""
msg.attach(MIMEText(html_body, 'html'))
# Enviar email
try:
server = smtplib.SMTP(self.smtp_server, self.smtp_port)
server.starttls()
server.login(self.username, self.password)
server.send_message(msg)
server.quit()
return True
except Exception as e:
print(f"Error sending email: {e}")
return False
Monitoreo de Sistema
Health Monitoring
class SystemHealthMonitor:
def __init__(self):
self.health_metrics = {}
self.alert_thresholds = {
'data_latency_ms': 1000, # 1 second max
'cpu_usage_pct': 80, # 80% max
'memory_usage_pct': 85, # 85% max
'disk_usage_pct': 90, # 90% max
'network_errors_per_min': 5, # 5 errors max
'api_response_time_ms': 500 # 500ms max
}
def collect_system_metrics(self):
"""Recopilar métricas del sistema"""
import psutil
self.health_metrics = {
'timestamp': pd.Timestamp.now(),
'cpu_usage_pct': psutil.cpu_percent(interval=1),
'memory_usage_pct': psutil.virtual_memory().percent,
'disk_usage_pct': psutil.disk_usage('/').percent,
'network_io': psutil.net_io_counters(),
'process_count': len(psutil.pids()),
'uptime_hours': (pd.Timestamp.now() - self.start_time).total_seconds() / 3600
}
return self.health_metrics
def check_system_health(self):
"""Verificar salud del sistema"""
metrics = self.collect_system_metrics()
alerts = []
for metric, threshold in self.alert_thresholds.items():
if metric in metrics and metrics[metric] > threshold:
alerts.append({
'type': 'system_warning',
'metric': metric,
'current_value': metrics[metric],
'threshold': threshold,
'severity': 'high' if metrics[metric] > threshold * 1.2 else 'medium'
})
return alerts
def test_data_connections(self):
"""Test conectividad con fuentes de datos"""
connection_tests = {}
# Test Polygon.io
try:
response = requests.get('https://api.polygon.io/v1/marketstatus/now',
params={'apikey': POLYGON_API_KEY}, timeout=5)
connection_tests['polygon'] = {
'status': 'healthy' if response.status_code == 200 else 'error',
'response_time_ms': response.elapsed.total_seconds() * 1000,
'last_test': pd.Timestamp.now()
}
except Exception as e:
connection_tests['polygon'] = {
'status': 'error',
'error': str(e),
'last_test': pd.Timestamp.now()
}
# Test other connections...
return connection_tests
Costos y ROI
Análisis de Costos
def calculate_infrastructure_costs():
"""Calcular costos mensuales de infraestructura"""
monthly_costs = {
'data_feeds': {
'polygon_io_developer': 99,
'iex_cloud_scale': 99,
'tradingview_pro_plus': 60,
'total': 258
},
'brokers': {
'interactive_brokers': 10,
'das_trader_pro': 150,
'tradingview_alerts': 15,
'total': 175
},
'cloud_services': {
'aws_ec2_t3_large': 60,
'aws_rds_postgres': 45,
'aws_s3_storage': 25,
'digital_ocean_backup': 20,
'total': 150
},
'software': {
'office_365': 15,
'discord_nitro': 10,
'github_pro': 4,
'total': 29
},
'communications': {
'dedicated_internet': 150,
'backup_cellular': 50,
'voip_service': 25,
'total': 225
}
}
total_monthly = sum(category['total'] for category in monthly_costs.values())
annual_cost = total_monthly * 12
# One-time setup costs
setup_costs = {
'hardware': 4000,
'software_licenses': 1500,
'initial_development': 5000,
'total': 10500
}
return {
'monthly_operational': total_monthly,
'annual_operational': annual_cost,
'setup_costs': setup_costs['total'],
'total_first_year': annual_cost + setup_costs['total'],
'breakdown': monthly_costs
}
def calculate_breakeven_analysis(infrastructure_costs, trading_capital):
"""Calcular análisis de break-even"""
annual_cost = infrastructure_costs['annual_operational']
# Retornos necesarios para break-even
breakeven_scenarios = {
'conservative': {
'required_annual_return_pct': annual_cost / trading_capital,
'required_monthly_return_pct': (annual_cost / trading_capital) / 12,
'trades_per_month': 20,
'avg_return_per_trade_required': (annual_cost / 12) / (trading_capital * 0.02) / 20
},
'realistic': {
'target_annual_return_pct': 0.25, # 25%
'required_capital_for_breakeven': annual_cost / 0.25,
'profit_after_costs': trading_capital * 0.25 - annual_cost
}
}
return breakeven_scenarios
Backup y Disaster Recovery
class DisasterRecoveryPlan:
def __init__(self):
self.backup_systems = {}
self.recovery_procedures = {}
def setup_backup_systems(self):
"""Configurar sistemas de backup"""
self.backup_systems = {
'data_backup': {
'primary': 'AWS S3 with versioning',
'secondary': 'Google Cloud Storage',
'frequency': 'Real-time replication',
'retention': '7 years'
},
'code_backup': {
'primary': 'GitHub private repos',
'secondary': 'GitLab backup',
'frequency': 'Every commit',
'retention': 'Indefinite'
},
'system_backup': {
'primary': 'Full system images weekly',
'secondary': 'Incremental daily',
'frequency': 'Daily incremental, weekly full',
'retention': '90 days'
}
}
def create_recovery_procedures(self):
"""Procedimientos de recuperación"""
self.recovery_procedures = {
'internet_outage': {
'immediate_actions': [
'Switch to cellular backup',
'Notify broker of connectivity issues',
'Close all open positions if critical'
],
'recovery_time': '5 minutes',
'contact_list': ['ISP support', 'Cellular provider']
},
'hardware_failure': {
'immediate_actions': [
'Switch to backup computer',
'Access cloud-based trading platform',
'Download latest data snapshot'
],
'recovery_time': '15 minutes',
'backup_hardware': 'Secondary trading computer ready'
},
'broker_outage': {
'immediate_actions': [
'Switch to backup broker account',
'Hedge positions if possible',
'Monitor via alternative platforms'
],
'recovery_time': '10 minutes',
'backup_brokers': ['TD Ameritrade', 'Alpaca']
}
}
Este sistema de infraestructura avanzada permite trading profesional con alta disponibilidad y monitoreo completo. Los costos son significativos pero justificables para operaciones serias.